Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Chaos ; 33(1): 013124, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2222110

ABSTRACT

The accumulation of susceptible populations for respiratory infectious diseases (RIDs) when COVID-19-targeted non-pharmaceutical interventions (NPIs) were in place might pose a greater risk of future RID outbreaks. We examined the timing and magnitude of RID resurgence after lifting COVID-19-targeted NPIs and assessed the burdens on the health system. We proposed the Threshold-based Control Method (TCM) to identify data-driven solutions to maintain the resilience of the health system by re-introducing NPIs when the number of severe infections reaches a threshold. There will be outbreaks of all RIDs with staggered peak times after lifting COVID-19-targeted NPIs. Such a large-scale resurgence of RID patients will impose a significant risk of overwhelming the health system. With a strict NPI strategy, a TCM-initiated threshold of 600 severe infections can ensure a sufficient supply of hospital beds for all hospitalized severely infected patients. The proposed TCM identifies effective dynamic NPIs, which facilitate future NPI relaxation policymaking.


Subject(s)
COVID-19 , Respiratory Tract Infections , Humans , Hong Kong/epidemiology , COVID-19/epidemiology , Pandemics , Disease Outbreaks
2.
IEEE Trans Cogn Dev Syst ; 14(2): 519-531, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1895931

ABSTRACT

Information spread on social media has been extensively studied through both model-driven theoretical research and data-driven case studies. Recent empirical studies have analyzed the differences and complexity of information dissemination, but theoretical explanations of its characteristics from a modeling perspective are underresearched. To capture the complex patterns of the information dissemination mechanism, we propose a resistant linear threshold (RLT) dissemination model based on psychological theories and empirical findings. In this article, we validate the RLT model on three types of networks and then quantify and compare the dissemination characteristics of the simulation results with those from the empirical results. In addition, we examine the factors affecting dissemination. Finally, we perform two case studies of the 2019 novel Corona Virus Disease (COVID-19)-related information dissemination. The dissemination characteristics derived by the simulations are consistent with the empirical research. These results demonstrate that the RLT model is able to capture the patterns of information dissemination on social media and thus provide model-driven insights into the interpretation of public opinion, rumor control, and marketing strategies on social media.

3.
Advanced Theory and Simulations ; 5(4):2270010, 2022.
Article in English | Wiley | ID: covidwho-1782559

ABSTRACT

Impacts of Export Restrictions on the Global Personal Protective Equipment Trade Network During COVID-19 In article number 2100352, Ye, Zhang and co-workers investigate the effect of personal protective equipment (PPE) shortages on COVID-19 contagion patterns. Integrating a metapopulation model and a threshold model, it is found that export restrictions on PPE cause shortage contagion on the global PPE trade network to transmit even faster than the disease contagion on global mobility network.

4.
Nat Hum Behav ; 6(2): 207-216, 2022 02.
Article in English | MEDLINE | ID: covidwho-1661962

ABSTRACT

Despite broad agreement on the negative consequences of vaccine inequity, the distribution of COVID-19 vaccines is imbalanced. Access to vaccines in high-income countries (HICs) is far greater than in low- and middle-income countries (LMICs). As a result, there continue to be high rates of COVID-19 infections and deaths in LMICs. In addition, recent mutant COVID-19 outbreaks may counteract advances in epidemic control and economic recovery in HICs. To explore the consequences of vaccine (in)equity in the face of evolving COVID-19 strains, we examine vaccine allocation strategies using a multistrain metapopulation model. Our results show that vaccine inequity provides only limited and short-term benefits to HICs. Sharper disparities in vaccine allocation between HICs and LMICs lead to earlier and larger outbreaks of new waves. Equitable vaccine allocation strategies, in contrast, substantially curb the spread of new strains. For HICs, making immediate and generous vaccine donations to LMICs is a practical pathway to protect everyone.


Subject(s)
COVID-19 Vaccines , COVID-19/prevention & control , Healthcare Disparities , Developing Countries , Humans
5.
Int J Infect Dis ; 116: 411-417, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1654566

ABSTRACT

OBJECTIVES: The aim of the study was to reconstruct the complete transmission chain of the COVID-19 outbreak in Beijing's Xinfadi Market using data from epidemiological investigations, which contributes to reflecting transmission dynamics and transmission risk factors. METHODS: We set up a transmission model, and the model parameters are estimated from the survey data via Markov chain Monte Carlo sampling. Bayesian data augmentation approaches are used to account for uncertainty in the source of infection, unobserved onset, and infection dates. RESULTS: The rate of transmission of COVID-19 within households is 9.2%. Older people are more susceptible to infection. The accuracy of our reconstructed transmission chain was 67.26%. In the gathering place of this outbreak, the Beef and Mutton Trading Hall of Xinfadi market, most of the transmission occurs within 20 m, only 19.61% of the transmission occurs over a wider area (>20 m), with an overall average transmission distance of 13.00 m. The deepest transmission generation is 9. In this outbreak, there were 2 abnormally high transmission events. CONCLUSIONS: The statistical method of reconstruction of transmission trees from incomplete epidemic data provides a valuable tool to help understand the complex transmission factors and provides a practical guideline for investigating the characteristics of the development of epidemics and the formulation of control measures.


Subject(s)
COVID-19 , Epidemics , Aged , Animals , Bayes Theorem , Beijing/epidemiology , COVID-19/epidemiology , Cattle , China/epidemiology , Disease Outbreaks , Humans , SARS-CoV-2
6.
Natl Sci Rev ; 8(11): nwab148, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1559483

ABSTRACT

2020 was an unprecedented year, with rapid and drastic changes in human mobility due to the COVID-19 pandemic. To understand the variation in commuting patterns among the Chinese population across stable and unstable periods, we used nationwide mobility data from 318 million mobile phone users in China to examine the extreme fluctuations of population movements in 2020, ranging from the Lunar New Year travel season (chunyun), to the exceptional calm of COVID-19 lockdown, and then to the recovery period. We observed that cross-city movements, which increased substantially in chunyun and then dropped sharply during the lockdown, are primarily dependent on travel distance and the socio-economic development of cities. Following the Lunar New Year holiday, national mobility remained low until mid-February, and COVID-19 interventions delayed more than 72.89 million people returning to large cities. Mobility network analysis revealed clusters of highly connected cities, conforming to the social-economic division of urban agglomerations in China. While the mass migration back to large cities was delayed, smaller cities connected more densely to form new clusters. During the recovery period after travel restrictions were lifted, the netflows of over 55% city pairs reversed in direction compared to before the lockdown. These findings offer the most comprehensive picture of Chinese mobility at fine resolution across various scenarios in China and are of critical importance for decision making regarding future public-health-emergency response, transportation planning and regional economic development, among others.

7.
Adv Theory Simul ; 5(4): 2100352, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1557820

ABSTRACT

The COVID-19 pandemic has caused a dramatic surge in demand for personal protective equipment (PPE) worldwide. Many countries have imposed export restrictions on PPE to ensure the sufficient domestic supply. The surging demand and export restrictions cause shortage contagions on the global PPE trade network. Here, an integrated network model is developed, which integrates a metapopulation model and a threshold model, to investigate the shortage contagion patterns. The metapopulation model captures disease contagion across countries. The threshold model captures the shortage contagion on the global PPE trade network. Due to the Pareto distribution in global exports, the shortage contagion pattern is mainly determined by the export restriction policies of the top exporters. Export restrictions exacerbate the shortages of PPE and cause the shortage contagion to transmit even faster than the disease contagion. To some extent, export restrictions can provide benefits for self-sufficient countries, at the sacrifice of immediate economic shocks at not-self-sufficient countries. With export restrictions, a large amount of PPE is hoarded instead of being distributed to where it is most needed, particularly at the early stage. Cooperation between countries plays an essential role in preventing global shortages of PPE regardless of the production level. Except for promoting global cooperation, governments and international organizations should take actions to reduce supply chain barriers and work together to increase global PPE production.

8.
Philos Trans A Math Phys Eng Sci ; 380(2214): 20210127, 2022 Jan 10.
Article in English | MEDLINE | ID: covidwho-1528263

ABSTRACT

During the COVID-19 pandemic, more than ever, data science has become a powerful weapon in combating an infectious disease epidemic and arguably any future infectious disease epidemic. Computer scientists, data scientists, physicists and mathematicians have joined public health professionals and virologists to confront the largest pandemic in the century by capitalizing on the large-scale 'big data' generated and harnessed for combating the COVID-19 pandemic. In this paper, we review the newly born data science approaches to confronting COVID-19, including the estimation of epidemiological parameters, digital contact tracing, diagnosis, policy-making, resource allocation, risk assessment, mental health surveillance, social media analytics, drug repurposing and drug development. We compare the new approaches with conventional epidemiological studies, discuss lessons we learned from the COVID-19 pandemic, and highlight opportunities and challenges of data science approaches to confronting future infectious disease epidemics. This article is part of the theme issue 'Data science approaches to infectious disease surveillance'.


Subject(s)
COVID-19 , Pandemics , Contact Tracing , Data Science , Humans , Pandemics/prevention & control , SARS-CoV-2
9.
Chaos ; 31(10): 101104, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1493328

ABSTRACT

Nonpharmaceutical interventions (NPIs) for contact suppression have been widely used worldwide, which impose harmful burdens on the well-being of populations and the local economy. The evaluation of alternative NPIs is needed to confront the pandemic with less disruption. By harnessing human mobility data, we develop an agent-based model that can evaluate the efficacies of NPIs with individualized mobility simulations. Based on the model, we propose data-driven targeted interventions to mitigate the COVID-19 pandemic in Hong Kong without city-wide NPIs. We develop a data-driven agent-based model for 7.55×106 Hong Kong residents to evaluate the efficacies of various NPIs in the first 80 days of the initial outbreak. The entire territory of Hong Kong has been split into 4905 500×500m2 grids. The model can simulate detailed agent interactions based on the demographics data, public facilities and functional buildings, transportation systems, and travel patterns. The general daily human mobility patterns are adopted from Google's Community Mobility Report. The scenario without any NPIs is set as the baseline. By simulating the epidemic progression and human movement at the individual level, we propose model-driven targeted interventions which focus on the surgical testing and quarantine of only a small portion of regions instead of enforcing NPIs in the whole city. The effectiveness of common NPIs and the proposed targeted interventions are evaluated by 100 extensive simulations. The proposed model can inform targeted interventions, which are able to effectively contain the COVID-19 outbreak with much lower disruption of the city. It represents a promising approach to sustainable NPIs to help us revive the economy of the city and the world.


Subject(s)
COVID-19 , Pandemics , Big Data , Hong Kong/epidemiology , Humans , SARS-CoV-2
10.
IEEE Trans Autom Sci Eng ; 19(2): 576-585, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1416229

ABSTRACT

As part of ongoing efforts to contain the coronavirus disease (COVID-19) pandemic, understanding the role of asymptomatic patients in the transmission system is essential for infection control. However, the optimal approach to risk assessment and management of asymptomatic cases remains unclear. This study proposed a Susceptible, Exposed, Infectious, No symptoms, Hospitalized and reported, Recovered, Death (SEINRHD) epidemic propagation model. The model was constructed based on epidemiological characteristics of COVID-19 in China and accounting for the heterogeneity of social contact networks. The early community outbreaks in Wuhan were reconstructed and fitted with the actual data. We used this model to assess epidemic control measures for asymptomatic cases in three dimensions. The impact of asymptomatic cases on epidemic propagation was examined based on the effective reproduction number, abnormally high transmission events, and type and structure of transmission. Management of asymptomatic cases can help flatten the infection curve. Tracing 75% of the asymptomatic cases corresponds to a 32.5% overall reduction in new cases (compared with tracing no asymptomatic cases). Regardless of population-wide measures, household transmission is higher than other types of transmission, accounting for an estimated 50% of all cases. The magnitude of tracing of asymptomatic cases is more important than the timing; when all symptomatic patients were traced, tested, and isolated in a timely manner, the overall epidemic was not sensitive to the time of implementing the measures to trace asymptomatic patients. Disease control and prevention within families should be emphasized during an epidemic. Note to Practitioners-This article addresses the urgent need to assess the risk of another COVID-19 outbreak caused by asymptomatic cases and to find the optimal, most practical approach to asymptomatic case management. Previous studies mostly focused on the clinical and statistical characteristics of asymptomatic cases; few have evaluated the impact of asymptomatic case measures using mathematical modeling at the community scale. This study proposed a Susceptible, Exposed, Infectious, No symptoms, Hospitalized and reported, Recovered, Death (SEINRHD) propagation model based on local community structures and social contact networks, according to the development characteristics and trend of COVID-19 in a Chinese community. The conclusion provides theoretical support for emergency work of relevant departments in different periods of an epidemic. In the early stages of the epidemic, timely detection and isolation of symptomatic patients should be a priority. Where there are surplus resources for epidemic prevention, the authorities should consider increasing the proportion of asymptomatic patients being traced. Epidemic prevention measures among family members should be a primary focus of attention. This combination of strategies can help reduce the rate of viral transmission and result in extinguishing the epidemic.

11.
Fundamental Research ; 2021.
Article in English | ScienceDirect | ID: covidwho-1347603

ABSTRACT

Introduction Multivariate time series prediction of infectious diseases is significant to public health, and the deep learning method has attracted increasing attention in this research field. Material and Methods An adaptively temporal graph convolution (ATGCN) model, which learns the contact patterns of multiple age groups in a graph-based approach, was proposed for COVID- 19 and influenza prediction. We compared ATGCN with autoregressive models, deep sequence learning models, and experience- based ATGCN models in short-term and long-term prediction tasks. Results Results showed that the ATGCN model performed better than the autoregressive models and the deep sequence learning models on two datasets in both short-term (12.5% and 10% improvements on RMSE) and long-term (12.4% and 5% improvements on RMSE) prediction tasks. And the RMSE of ATGCN predictions fluctuated least in different age groups of COVID- 19 (0.029 ± 0.003) and influenza (0.059±0.008). Compared with the Ones-ATGCN model or the Pre-ATGCN model, the ATGCN model was more robust in performance, with RMSE of 0.0293 and 0.06 on two datasets when horizon is one. Discussion Our research indicates a broad application prospect of deep learning in the field of infectious disease prediction. Transmission characteristics and domain knowledge of infectious diseases should be further applied to the design of deep learning models and feature selection. Conclusions The ATGCN model addressed the multivariate time series forecasting in a graph-based deep learning approach and achieved robust prediction on the confirmed cases of multiple age groups, indicating its great potentials for exploring the implicit interactions of multivariate variables.

12.
J Hypertens ; 39(8): 1717-1724, 2021 08 01.
Article in English | MEDLINE | ID: covidwho-1288137

ABSTRACT

BACKGROUND: Angiotensin-converting enzyme inhibitors (ACEIs) or angiotensin receptor blockers (ARBs) may be associated with higher susceptibility of COVID-19 infection and adverse outcomes. We compared ACEI/ARB use and COVID-19 positivity in a case-control design, and severity in COVID-19 positive patients. METHODS: Consecutive patients who attended Hong Kong's public hospitals or outpatient clinics between 1 January and 28 July 2020 for COVID-19 real time-PCR (RT-PCR) tests were included. Baseline demographics, past comorbidities, laboratory tests and use of different medications were compared between COVID-19 positive and negative patients. Severe endpoints for COVID-19 positive patients were 28-day mortality, need for intensive care admission or intubation. RESULTS: This study included 213 788 patients (COVID-19 positive: n = 2774 patients; negative: n = 211 014). In total, 162 COVID-19 positive patients (5.83%) met the severity outcome. The use of ACEI/ARB was significantly higher amongst cases than controls (n = 156/2774, 5.62 vs. n = 6708/211014, 3.17%; P < 0.0001). Significant univariate predictors of COVID-19 positivity and severe COVID-19 disease were older age, higher Charlson score, comorbidities, use of ACEI/ARB, antidiabetic, lipid-lowering, anticoagulant and antiplatelet drugs and laboratory tests (odds ratio >1, P < 0.05). The relationship between the use of ACEI/ARB and COVID-19 positivity or severe disease remained significant after multivariable adjustment. No significant differences in COVID-19 positivity or disease severity between ACEI and ARB use were observed (P > 0.05). CONCLUSION: There was a significant relationship between ACEI/ARB use and COVID-19 positivity and severe disease after adjusting for significant confounders.


Subject(s)
Angiotensin Receptor Antagonists , Angiotensin-Converting Enzyme Inhibitors , COVID-19 , COVID-19/epidemiology , COVID-19/mortality , Case-Control Studies , Hospitalization/statistics & numerical data , Humans , Incidence
13.
J Biosaf Biosecur ; 3(2): 76-81, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1284240

ABSTRACT

COVID-19 is the most severe pandemic globally since the 1918 influenza pandemic. Effectively responding to this once-in-a-century global pandemic is a worldwide challenge that the international community needs to jointly face and solve. This study reviews and discusses the key measures taken by major countries in 2020 to fight against COVID-19, such as lockdowns, social distancing, wearing masks, hand hygiene, using Fangcang shelter hospitals, large-scale nucleic acid testing, close-contacts tracking, and pandemic information monitoring, as well as their prevention and control effects. We hope it can help improve the efficiency and effectiveness of pandemic prevention and control in future.

14.
Chaos ; 31(6): 061102, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1272874

ABSTRACT

African swine fever (ASF) is a highly contagious hemorrhagic viral disease of domestic and wild pigs. ASF has led to major economic losses and adverse impacts on livelihoods of stakeholders involved in the pork food system in many European and Asian countries. While the epidemiology of ASF virus (ASFV) is fairly well understood, there is neither any effective treatment nor vaccine. In this paper, we propose a novel method to model the spread of ASFV in China by integrating the data of pork import/export, transportation networks, and pork distribution centers. We first empirically analyze the overall spatiotemporal patterns of ASFV spread and conduct extensive experiments to evaluate the efficacy of a number of geographic distance measures. These empirical analyses of ASFV spread within China indicate that the first occurrence of ASFV has not been purely dependent on the geographical distance from existing infected regions. Instead, the pork supply-demand patterns have played an important role. Predictions based on a new distance measure achieve better performance in predicting ASFV spread among Chinese provinces and thus have the potential to enable the design of more effective control interventions.


Subject(s)
African Swine Fever Virus , African Swine Fever , African Swine Fever/epidemiology , Animals , Asia , China/epidemiology , Sus scrofa , Swine
15.
NPJ Digit Med ; 4(1): 66, 2021 Apr 08.
Article in English | MEDLINE | ID: covidwho-1174705

ABSTRACT

Recent studies have reported numerous predictors for adverse outcomes in COVID-19 disease. However, there have been few simple clinical risk scores available for prompt risk stratification. The objective is to develop a simple risk score for predicting severe COVID-19 disease using territory-wide data based on simple clinical and laboratory variables. Consecutive patients admitted to Hong Kong's public hospitals between 1 January and 22 August 2020 and diagnosed with COVID-19, as confirmed by RT-PCR, were included. The primary outcome was composite intensive care unit admission, need for intubation or death with follow-up until 8 September 2020. An external independent cohort from Wuhan was used for model validation. COVID-19 testing was performed in 237,493 patients and 4442 patients (median age 44.8 years old, 95% confidence interval (CI): [28.9, 60.8]); 50% males) were tested positive. Of these, 209 patients (4.8%) met the primary outcome. A risk score including the following components was derived from Cox regression: gender, age, diabetes mellitus, hypertension, atrial fibrillation, heart failure, ischemic heart disease, peripheral vascular disease, stroke, dementia, liver diseases, gastrointestinal bleeding, cancer, increases in neutrophil count, potassium, urea, creatinine, aspartate transaminase, alanine transaminase, bilirubin, D-dimer, high sensitive troponin-I, lactate dehydrogenase, activated partial thromboplastin time, prothrombin time, and C-reactive protein, as well as decreases in lymphocyte count, platelet, hematocrit, albumin, sodium, low-density lipoprotein, high-density lipoprotein, cholesterol, glucose, and base excess. The model based on test results taken on the day of admission demonstrated an excellent predictive value. Incorporation of test results on successive time points did not further improve risk prediction. The derived score system was evaluated with out-of-sample five-cross-validation (AUC: 0.86, 95% CI: 0.82-0.91) and external validation (N = 202, AUC: 0.89, 95% CI: 0.85-0.93). A simple clinical score accurately predicted severe COVID-19 disease, even without including symptoms, blood pressure or oxygen status on presentation, or chest radiograph results.

17.
Chaos ; 31(2): 021101, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1101732

ABSTRACT

The emergence of coronavirus disease 2019 (COVID-19) has infected more than 62 million people worldwide. Control responses varied across countries with different outcomes in terms of epidemic size and social disruption. This study presents an age-specific susceptible-exposed-infected-recovery-death model that considers the unique characteristics of COVID-19 to examine the effectiveness of various non-pharmaceutical interventions (NPIs) in New York City (NYC). Numerical experiments from our model show that the control policies implemented in NYC reduced the number of infections by 72% [interquartile range (IQR) 53-95] and the number of deceased cases by 76% (IQR 58-96) by the end of 2020. Among all the NPIs, social distancing for the entire population and protection for the elderly in public facilities is the most effective control measure in reducing severe infections and deceased cases. School closure policy may not work as effectively as one might expect in terms of reducing the number of deceased cases. Our simulation results provide novel insights into the city-specific implementation of NPIs with minimal social disruption considering the locations and population characteristics.


Subject(s)
COVID-19/prevention & control , Models, Biological , SARS-CoV-2 , Age Factors , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , New York City/epidemiology
18.
Int J Infect Dis ; 104: 1-6, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-988030

ABSTRACT

OBJECTIVES: We aimed to explore the collective wisdom of preprints related to COVID-19 by comparing and synthesizing them with results of peer-reviewed publications. METHODS: PubMed, Google Scholar, medRxiv, bioRxiv, arXiv, and SSRN were searched for papers regarding the estimation of four epidemiological parameters of COVID-19: the basic reproduction number, incubation period, infectious period, and case-fatality-rate. Distributions of parameters and timeliness of preprints and peer-reviewed papers were compared. Four parameters in two groups were synthesized by bootstrapping, and their validities were evaluated by simulated cumulative cases of the susceptible-exposed-infectious-recovered-dead-cumulative (SEIRDC) model. RESULTS: A total of 106 papers were included for analysis. The distributions of four parameters in two literature groups were close, and the timeliness of preprints was better. Synthesized estimates of the basic reproduction number (3.18, 95% CI 2.85-3.53), incubation period (5.44 days, 95% CI 4.98-5.99), infectious period (6.25 days, 95% CI 5.09-7.51), and case-fatality-rate (4.51%, 95% CI 3.41%-6.29%) were obtained. Simulated cumulative cases of the SEIRDC model matched well with the onset cases in China. CONCLUSIONS: The validity of the COVID-19 parameter estimations of the preprints was on par with that of peer-reviewed publications, and synthesized results of literatures could reduce the uncertainty and be used for epidemic decision-making.


Subject(s)
COVID-19/epidemiology , Peer Review, Research , SARS-CoV-2 , Humans , Publications
19.
Phys Rev E ; 102(4-1): 042314, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-920840

ABSTRACT

Motivated by the importance of individual differences in risk perception and behavior change in people's responses to infectious disease outbreaks (particularly the ongoing COVID-19 pandemic), we propose a heterogeneous disease-behavior-information transmission model, in which people's risk of getting infected is influenced by information diffusion, behavior change, and disease transmission. We use both a mean-field approximation and Monte Carlo simulations to analyze the dynamics of the model. Information diffusion influences behavior change by allowing people to be aware of the disease and adopt self-protection and subsequently affects disease transmission by changing the actual infection rate. Results show that (a) awareness plays a central role in epidemic prevention, (b) a reasonable fraction of overreacting nodes are needed in epidemic prevention (c) the basic reproduction number R_{0} has different effects on epidemic outbreak for cases with and without asymptomatic infection, and (d) social influence on behavior change can remarkably decrease the epidemic outbreak size. This research indicates that the media and opinion leaders should not understate the transmissibility and severity of diseases to ensure that people become aware of the disease and adopt self-protection to protect themselves and the whole population.


Subject(s)
Behavior , Disease Transmission, Infectious , Models, Theoretical , COVID-19/epidemiology , COVID-19/transmission , Diffusion , Humans , Monte Carlo Method , Pandemics , Perception , Risk Assessment
20.
Geography and Sustainability ; 2020.
Article in English | PMC | ID: covidwho-833502

ABSTRACT

The outbreak of the 2019 novel coronavirus disease (COVID-19) has caused more than 100,000 people infected and thousands of deaths. Currently, the number of infections and deaths is still increasing rapidly. COVID-19 seriously threatens human health, production, life, social functioning and international relations. In the fight against COVID-19, Geographic Information Systems (GIS) and big data technologies have played an important role in many aspects, including the rapid aggregation of multi-source big data, rapid visualization of epidemic information, spatial tracking of confirmed cases, prediction of regional transmission, spatial segmentation of the epidemic risk and prevention level, balancing and management of the supply and demand of material resources, and social-emotional guidance and panic elimination, which provided solid spatial information support for decision-making, measures formulation, and effectiveness assessment of COVID-19 prevention and control. GIS has developed and matured relatively quickly and has a complete technological route for data preparation, platform construction, model construction, and map production. However, for the struggle against the widespread epidemic, the main challenge is finding strategies to adjust traditional technical methods and improve speed and accuracy of information provision for social management. At the data level, in the era of big data, data no longer come mainly from the government but are gathered from more diverse enterprises. As a result, the use of GIS faces difficulties in data acquisition and the integration of heterogeneous data, which requires governments, businesses, and academic institutions to jointly promote the formulation of relevant policies. At the technical level, spatial analysis methods for big data are in the ascendancy. Currently and for a long time in the future, the development of GIS should be strengthened to form a data-driven system for rapid knowledge acquisition, which signifies that GIS should be used to reinforce the social operation parameterization of models and methods, especially when providing support for social management.

SELECTION OF CITATIONS
SEARCH DETAIL